Calculation of relaxation rates from microscopic equations of motion.
نویسندگان
چکیده
For classical systems with anharmonic forces, Newton's equations for particle trajectories are nonlinear, while Liouville's equation for the evolution of functions of position and momentum is linear and is solved by constructing a basis of functions in which the Liouvillian is a tridiagonal matrix, which is then diagonalized. For systems that are chaotic in the sense that neighboring trajectories diverge exponentially, the initial conditions determine the solution to Liouville's equation for short times; but for long times, the solutions decay exponentially at rates independent of the initial conditions. These are the relaxation rates of irreversible processes, and they arise in these calculations as the imaginary parts of the frequencies where there are singularities in the analytic continuations of solutions to Liouville's equation. These rates are calculated for two examples: the inverted oscillator, which can be solved both analytically and numerically, and a charged particle in a periodic magnetic field, which can only be solved numerically. In these systems, dissipation arises from traveling-wave solutions to Liouville's equation that couple low and high wave-number modes allowing energy to flow from disturbances that are coherent over large scales to disturbances on ever smaller scales finally becoming incoherent over microscopic scales. These results suggest that dissipation in large scale motion of the system is a consequence of chaos in the small scale motion.
منابع مشابه
Computation Optical Flow Using Pipeline Architecture
Accurate estimation of motion from time-varying imagery has been a popular problem in vision studies, This information can be used in segmentation, 3D motion and shape recovery, target tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image model for estimating image motion from image sequences, and have shown how the solution can be obtained from a ...
متن کاملNearly logarithmic decay in the colloidal hard-sphere system.
Nearly logarithmic decay is identified in the data for the mean-squared displacement of the colloidal hard-sphere system at the liquid-glass transition [W. van Megen, Phys. Rev. E 58, 6073 (1998)]. The solutions of the mode-coupling theory for the microscopic equations of motion fit the experimental data well. Based on these equations, the nearly logarithmic decay is explained as the equivalent...
متن کاملDevelopment of an Implicit Numerical Model for Calculation of Sub and Super Critical Flows
A two dimensional numerical model of shallow water equations was developed tocalculate sub and super-critical open channel flows. Utilizing an implicit scheme the steady stateequations were discretized based on control volume method. Collocated grid arrangement was appliedwith a SIMPLEC like algorithm for depth-velocity coupling. Power law scheme was used fordiscretization of convection and dif...
متن کاملA pr 1 99 9 Equations of structural relaxation
In the mode coupling theory of the liquid to glass transition the long time structural relaxation follows from equations solely determined by equilibrium structural parameters. The present extension of these structural relaxation equations to arbitrarily short times on the one hand allows calculations unaffected by model assumptions about the microscopic dynamics and on the other hand supplies ...
متن کاملPressure Calculation in the Flow Between Two Rotating Eccentric Cylinders at High Renolds Numbers
This paper reports the result of an analytical investigation of a steady, incompressible and viscous flow between two eccentric, rotating cylinders at high Reynolds number. A one dimensional case is far from reality because the gap between the cylinders is very small. Further, when their axes are displaced by a small distance, usually caused by bearing loads, two dimensional effects become obvi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
دوره 59 5 Pt A شماره
صفحات -
تاریخ انتشار 1999